
Design and Evaluation of a Network Distance
Based Planning Service

Sanghwan Lee
Kookmin University

Email: sanghwan@kookmin.ac.kr

Sambit Sahu
IBM T.J. Watson Research

Email: sambits@us.ibm.com

Debanjan Saha
IBM T.J. Watson Research
Email: dsaha@us.ibm.com

Abstract— In this paper, we design and evaluate the prototype
of a network planning service utilizing the coordinate based
embedding of network hosts. The kernel of our prototype consists
of a scalable network distance embedding method, a core set of
services built on top of this embedding, and a generic set of
APIs exposed to the applications for utilizing these services. The
implemented service core consists of four generic servicesthat
we argue to be common to a wide range of applications requiring
management of services and monitoring of network distance
among Internet hosts. The proposed service does not require
any support from the end-hosts. We evaluate the implemented
service core using real Internet data and demonstrate its efficacy.
Our experience provides several key insights for the designand
management of a suitable embedding scheme.

I. I NTRODUCTION

Scalable estimation of network distances among Internet
hosts is the fundamental enabler for various content dis-
tribution applications such as BitTorrent, Skype, and Aka-
mai. These applications often require scalable estimationof
network distances among their serving client base to adapt
resource usage and choice of services to changing network
conditions. Recent approaches on scalable distance estimation
embed Internet hosts into a Euclidean space based on the
small amount of distance measurement from a set of machines
called landmarks to the Internet hosts ([1], [2]). The network
distances are estimated by the Euclidean distances between
coordinates among the hosts.

Motivated by the promising results of such an approach,
we propose and build a set of four distance based services
utilizing the embedding approach. We believe that these core
set of services can serve as the basic primitives for a large
variety of CDN applications. While the services provided by
the CDN/peer-to-peer based applications may differ signifi-
cantly, there are lots of commonalities among the underlying
service enablers. For example, the service provided by Akamai
requires accurate estimate of nearest server selection forits
clients for serving contents; Skype application requires the
determination of relay nodes between the source and the
destination; BitTorrent file distribution service requires set of
peer nodes that are closer to the content downloader. While
these requirements differ from one another, we argue that a few
set of primitives can effectively address these requirements.

Adopting the landmark based network embedding schemes
such as [1] and [2], we design a network planning service
prototype, netGPS, that provides a core set of services to

applications. netGPS consists of three parts : netGPS API,
netGPS Core, and a set of services. netGPS API provides
simple and generic APIs for applications to initialize and
access its services. netGPS Core maintains all the measured
distances from the Landmarks to the hosts and embedding
information of the hosts. Based on the distance information
from the Landmarks, the netGPS Core computes the embedded
coordinates of the hosts. The coordinates are computed only
when either a request arrives from an application or a change
in network condition is observed among the registered hosts.

Furthermore, we evaluate the efficiency and accuracy of our
prototype using the real Internet measurement data sets which
consist of pairwise network distance measurements among up
to 462 hosts. The main objective is to show that the generic
services we propose are not very sensitive to the accuracy
of the network embedding. To be specific, we run the same
algorithm for the generic services with real distances and the
estimated distances and we find that the difference in the
results is minimal.

The paper is organized as follows. Section II provides back-
ground for co-ordinate based approaches. Section III describes
the architecture of the prototype design. The algorithms for
the implementation of netGPS service core is described in
Section IV. Section V describes the experimental evaluation of
our prototype. Finally, we present some insights for designing
better embedding approach and summary in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we briefly discuss the coordinate based
distance mapping of Internet hosts. Next we motivate the core
set of services that we build utilizing such an approach. We
believe that these set of services will serve as basic primitives
that applications may use to facilitate a richer set of distance
aware services.

A. Coordinate based distance mapping

The basic idea of coordinate based distance mapping is that
each host has a set of synthetic coordinates for its position
and the estimated distance is the Euclidean distance between
the positions of the two hosts. The main difference among
different coordinate based distance mapping schemes is how
to assign the synthetic coordinates. GNP uses a fixed set of
landmarks as the reference points ([1]). The landmarks mea-
sure the distances among themselves and assign coordinates

by using simplex downhill optimization method. Basically,
they assign coordinates such that the error between the actual
distance and the estimated one is minimized. Then, based on
the coordinates of landmarks and the measured distances from
the landmakrs to a host, they compute the coordiantes of the
host by using the simplex downhill method. One problem is
the high computation time of the simplex downhill method.
So other approaches such as Virtual Landmarks and ICS are
proposed to reduce the computation time by using matrix
transformation and Principal Component Analysis ([2], [3]).

Even though all the above methods use different approaches,
their coordinates are based on the coordinates of the global
landmarks. This infrastructure based approach may not be
useful for some applications. Vivaldi method is fully dis-
tributed, requiring no fixed network infrastructure and no
distinguished hosts ([4]). The initial coordinates start from the
origin. By measuring the distances to small number of other
nodes, they adjust their coordinates by using spring relaxation
method. However, since Vivaldi requires the clients to run their
algorithm, we do not consider Vivaldi for our purposes because
in planning service, the clients could be any software accessing
the servers so that we cannot assume any special capability of
the software.

B. Core services

We propose and build four basic services utilizing the coor-
dinate based mapping approach. These services are, namely,
distance estimation between two arbitrary hosts/clients,es-
timated coverage of a server, server placement optimizing
coverage, and scalable detection of changes in the network
distance among a set of hosts. Before we describe these four
services carefully, we motivate the reasoning behind our choice
of these services as the building blocks for distance based
planning services.

Typical content distribution services and overlay based peer-
to-peer services often require the scalable determinationof
nearest server or peer nodes, determination of a set of leader
nodes, and adaptation of such services to network changes. For
example, Skype determines the best relay node between the
source and the destination of a VoIP call, whereas BitTorrent
based file dissemination requires the BT tracker to determine
a set of nearby nodes to serve the file to the file downloader.
A content provider such as Akamai is interested in scalable
determination of the nearest server for a set of clients. A
service provider may require to update its infrastructure such
that it is able to address its changing client populations by
optimizing its infrastructure placement near to the clients.
Furthermore, since the network distance can change over time,
they might need to monitor the distribution changes in a
constant manner.

Analyzing these services, we identify a set of four services
that are common among a variety of content distribution
applications. We believe that if this set of services can be
implemented in a generic manner, these can be served as
the building blocks for designing more enhanced services.

Following is the list of services that we have proposed and
built in our prototype.

• Network Distance Estimation : The service provides the
estimated distance between any pair of two nodes.

• Estimated Coverage of a server : The service provides
the gain of placing the server to a place in terms of the
clients who are withinδ ms from the server. The server
who has more such clients is more desirable.

• Optimization of the Server Placement : The service
provides a solution on where to put the given number
of servers to maximize the number of clients who are
within δ ms from the nearest servers.

• A scalable and hierarchical method for detecting network
changes : The service monitors the network status be-
tween the servers and clients so that the server placement
can adapt to the changes.

III. NETGPSARCHITECTURE

This section describes the architectural details of the netGPS
service prototype. As mentioned earlier, netGPS utilizes aco-
ordinate based distance mapping mechanism. netGPS consists
of three parts : netGPS API, netGPS Core, and a set of services
that we shall describe shortly.

netGPS API provides simple and generic APIs for applica-
tions to initialize and access its services. It should be noted
that netGPS users are likely to be the service providers rather
than end users. This API uses TCP communication to the
netGPS core to get the service. This simple API only requires
TCP connection, so it could be used in any environment. For
example, mobile devices as well as the ordinary PC can use
this service. netGPS Core is a server process that deals withthe
requests through the netGPS API. netGPS Core maintains all
the distances from the Landmarks to the hosts and embedding
information of the hosts. Based on the distance information
from the Landmarks, the netGPS Core computes the embedded
coordinates of the hosts. If the information about a host
does not exists, it requests the Landmarks the measurement
operation to get the distances from the Landmarks to the target
hosts. Based on the distance information from the Landmarks,
the netGPS Core computes the embedded coordinates of the
hosts. The core services are provided in an event driven
manner, i.e., computed and determined when either a request
arrives from an application or a change in network condition
is observed among the registered hosts.

Fig. 1 shows the overall structure of the netGPS service.
netGPS Core and Landmarks are maintained by the netGPS
service provider. netGPS API is used by the netGPS service
users, which include the end users as well as the Internet
Service Providers. There is only one type of communication
between netGPS API and netGPS Core. It is that the API
requests the coordinates to the netGPS Core by providing the
list of hosts and netGPS Core returns the coordinates of the
hosts. In the request, the API might set an option which makes
netGPS Core run a forced new measurement to the listed
hosts instead of returning the old measurement. For detecting
network changes, the netGPS API sends the new measurement

netGPS Core

Landmarks

netGPS API

Distance Estimation

Search

Server Selection

Periodic Monitoring

Host

APIs

command

Host IP

Coordinates,

 Measurements

Disance
Measurement

TCP

UDP

Fig. 1. Components of netGPS : netGPS API, netGPS Core, and Landmarks.

request periodically to the netGPS Core. The netGPS API
provides the four services based on the coordinates of the
hosts. In this architecture, all the complex operations aredone
on the service user’s side and the netGPS Core does the
simple embedding operation. This distinction between the API
and Core enables a scalable service. In the next section, we
describe the four services in detail.

IV. CORE SERVICE DETAILS

This section describes the algorithms and implementation
design for the four proposed services.

Distance Estimation :
The estimation is based on the coordinates of the hosts

returned from the netGPS Core. The Euclidean distance is
the estimated network distance. The usefulness of the network
distance estimation service has been argued by a large number
of papers. In the planning service, the absolute accuracy ofthe
network distance is not required due to the service objectives
we describe later in this section.

Estimated coverage of a server:
A server can serve a large number of clients existing in a

wide range of areas. The distribution of the network distances
from the clients to the server is a metric to show the usefulness
of the server. However, sometimes, the detailed distribution of
the network distances may not be necessary. For example, in
network games, the observed behavior of the server is non
distinguishable when the response time is within a certain
bound. So in this case, the coverage (i.e. the percentage or
number of satisfied clients served by the server) of a server is
a more meaningful metric to assess the usefulness of the server.
Furthermore, it can reflect the distribution in some sense. So
we claim that providing the estimated coverage of a server
would be useful to many service providers. The computation
is straightforward. From the coordinates of the clients andthe
server, we compute the number of clients that is withinδ ms
from the server. Depending on the application, we can provide
the percentage or the absolute numbers.

Optimization of the Server Placement : Many service
providers place multiple servers in the Internet to better serve

their users. One possible criteria to select the right placeis to
use the demographic information of the area so that an area
with a large population would get more servers than that with
a small population. However, we think that a more systematic
approach is needed for the server placement due to many
reasons such as the locality. netGPS uses a simple greedy
algorithm for this purpose. We first compute the estimated
distance among all the hosts. For each host, we compute the
number of hosts withinδ ms from the host. We select the host
with the largest number. Then, we remove the selected host
and all the hosts withinδ ms from the selected host. We repeat
the procedure until we select the given number of hosts. Then
we can put the same number of servers at the same location
of the selected hosts.

A Scalable and Hierarchical Method for Detecting Net-
work Changes : Monitoring the status of the client network
is necessary for maintaining the performance of the deployed
service. We describe a scalable and hierarchical method for
quickly detecting network anomaly, i.e., large changes in the
network delay using scalable end-to-end approach. Current
Internet routing protocols actually do link status monitoring
and adjust the routing table to detour the failed links. However,
the routing change information of a remote network does not
usually propagate to the other part of the Internet because of
the BGP policy routing. For some applications like overlay
networks or p2p networks, the number of nodes are very large
and widely distributed. So it is quite difficult to quickly know
the network status around remote nodes. One straightforward
way is to monitor the interested nodes continuously. However
if the number of interested nodes is high, it might not be
scalable to do this way. We propose a scalable adaptive
network monitoring scheme.

The basic idea is to group the target nodes into a number of
clusters so that the network status change of a node implies
the network status change of other nodes. Since the virtual
coordinate system provides a method to estimate the distance
among hosts, we can apply clustering algorithms such as K-
mean to group the target nodes. Next, we select a node from
each cluster and then monitor only the selected nodes. The
monitoring requires the landmarks to periodically measurethe
distances from themselves to the selected nodes. Then new
virtual coordinates for the selected nodes are computed. Ifthe
position of the selected nodes changes more than a threshold,
it is likely that the network status around the node might also
change. So we can further investigate the group that the node
belongs to. We do not monitor all the nodes in the group.
We subdivide the group into several subgroups by applying
some clustering algorithms and then choose the centroid of
each subgroup, then get the network status of the centroids
again. If some of the centroids have changed their positions,
we further subdivide the subgroups.

By the scheme we described above, the nodes with network
status change can be identified. We call this set of nodes
identified nodes. However, we do not know which area are
actually the problematic part in the Internet. To get more
detailed information, we use the traceroute data. Assume that

we have the traceroute data from the landmarks to all the
target nodes. We first compute the set of segments involved
in the traceroute data. A segment is a consecutive set of links
at which no branch is attached. Then, for each segment, we
iterate the following steps.

(i) Choose one segment. (ii) Suppose the segment has
increased its delay. (iii) List all the target nodes that would
be affected by the delay increase of the segment. (iv) If the
set of selected target nodes aresubsetof the identified nodes,
the segment is a possible candidate which causes the network
status change. If the set is asupersetof the identified nodes,
the segment cannot be a problematic node. (v) Do this iteration
for other segments.

The set of segments selected in the above step is the
candidates which might have caused the problem. Among the
selected set of segments, we choose the smallest subset of
segments that cause the changes of theidentified nodes. We
conclude that this smallest subset of the segments caused the
network changes of theidentified nodes. One heuristic in this
algorithm is that the cause of network changes should be as
small as possible.

V. PRELIMINARY EVALUATION

In this section, we briefly describe the prototype system of
netGPS. Then, we evaluate the efficacy of netGPS by showing
the experiment result done with the prototype system.

A. Prototype Implementation

The prototype contains three different programs : Land-
marks, netGPS Core and, MapViewer. MapViewer is an ap-
plication that uses the four netGPS APIs shown in Fig. 1.
netGPS APIs and MapViewer are implemented in Java. We
will implement C coded netGPS APIs in the future work.
Landmarks and netGPS Core are implemented in C and
running on unix.netGPS Coredoes several tasks before it
accepts requests from the netGPS APIs. One of them is to
get the distances among the landmark nodes to compute the
coordinates among the landmarks. In this prototype, the GNP
method is used for the coordinate computation. The request
from the netGPS API contains an option whether to run new
measurements or to use the old coordinates. If the option is
0, it means thatnetGPS Coreshould return, if any, the old
coordinates of the given hosts. If the option is 1 or there is
no old coordinates of a host, new measurement is launched
through the landmarks to the host. For the clustering operation
in the scalable monitoring service, we implemented k-medoid
algorithm. Other algorithms (such as k-mean) can be used
without large changes.

Fig. 2 shows a snapshot of MapViewer, which is currently
using the ”Optimization of the Server Placement” operation.
Users can set the number of servers and the radius. The squares
in the map represent the first two coordinates of the hosts. The
circles show the coverage of the selected servers. As can be
seen in Fig. 2, the dense area has more circles, which means
more servers to be placed.

Fig. 2. A snapshot of MapViewer, which is running the ”Optimization of
the Server Placement” operation.

One practical problem in the real experiment of the system
is that we need to carefully place the Landmarks in the
Internet to increase the accuracy of the embedding ([1]).
Due to the limitation of machines we have, we use King
([5]) method instead of the Landmarks program for the real
Internet experiments. In the experiment, we select 20 DNS
servers as landmarks and measure the distances from the set
of DNS servers to other DNS servers considering them as
end hosts by King method. It should be noted that King
method is relatively accurate for the distances among the DNS
servers than estimating the distances among arbitrary hosts.
So considering DNS servers as end hosts provides the same
result as we place Landmarks on the 20 selected DNS servers
and let them measure the distances to the other DNS servers.
However, we can still use the current prototype for end hosts
with a small loss of accuracy. Furthermore, this replacement
does not affect the behaviour of the MapViewer because it only
communicates to the netGPS core. The list of DNS servers is
obtained from the King data set provided by Vivaldi research
group ([6]).

B. Performance Evaluation

The performance of distance estimation has been analyzed
by many papers such as [1], [2], and [3]. We would refer
to their papers for more detailed evaluation information.
Nonetheless, based on their result, the accuracy of the distance
estimation is acceptable in terms of relative errors.

To evaluate the performance of Optimization of the Server
Placement operation, we run simulation on the real Internet
measurement data obtained from two independent measure-
ment groups : Planelab ([7]) and King data set ([6]). The
two data sets provide pairwise network distance among 202
and 462 hosts. In the Optimization of the Server Placement
operation, we want to maximize the number of hosts within a
given range from the nearest server.

Fig. 3 shows the fraction of hosts that is covered by the
selected servers in a given range over different ranges. For
a given range, we select 10 servers that can maximize the
number of hosts that are within the range. Then, the hosts

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

C
ov

er
ag

e

Range (ms)

Coordinates - Planetlab
Measurement - Planetlab

Coordinates - Vivaldi
Measurement - Vivaldi

Fig. 3. Fraction of hosts within the given range from the nearest server over
different ranges.

select the nearest server. There are two different ways to select
the nearest server. One is to select the nearest one in the
coordinate space. The other is to use extra measurements from
each host to the 10 servers and choose the nearest one. For both
ways, we compute the fraction of hosts that are covered by the
servers in the given range. As the range increases, the coverage
increases. When the nearest server is selected only based
on the coordinates (Coordinates-Planetlab and Coordinates-
Vivaldi), the coverage is lower than when the nearest serveris
selected by the measurements from the hosts to the 10 servers
(Measurement-Planetlab, Measurement-Vivaldi).

In the next experiment, we show the performance of the
server selection compared to the one that uses the real dis-
tances instead of the Euclidean distances. We compute the
number of hosts withinδ ms from the nearest servers in both
cases and compute the ratio of the two numbers. The nearest
servers are selected in two ways as described above. With
the fixed range (50ms), we vary the number of servers. As
can be seen in Fig. 4, the ratio stays almost constant about
0.6 to 0.9. It should be noted that in this experiment, the
algorithm to select the given number of servers is the same,
the greedy approach. Only the distances used in the algorithm
are different. The result might be different if we use different
algorithms, however, this experiment shows the performance
of using estimated distances comparable to the real distances.

VI. OBSERVATIONS AND SUMMARY

The netGPS planning service highly depends on the accu-
racy of the network embedding scheme. Most of the Euclidean
embedding scheme shows problems in estimating close dis-
tances. However, as shown in the evaluation, our service can
bypass some of the problems of the embedding schemes. For
example, in the server placement service, the inaccuracy of
the small distances does not affect the performance much es-
pecially when we use the real measurement after the selection
of the servers.

Nonetheless, good embedding scheme can improve the per-
formance of our services. For example, the Euclidean assump-
tion on the network distances causes most of the errors as can

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12

R
at

io

Number of Servers

Coordinates - Planetlab
Measurement - Planetlab

Coordinates - Vivaldi
Measurement - Vivaldi

Fig. 4. Ratio of the coverage with Euclidean distances over the coverage
with the real distances over the number of servers.

be seen in [8]. To provide some relaxation on the Euclidean
assumption, we may want to add height vector. Since our
service does not depend on the Euclidean assumption, any
accurate distance estimation scheme can be used instead of
GNP, which is currently adopted in our prototype. In addition,
we only need to know whether the hosts are within a given
radius from the servers. One way is to use the prefixes or AS
numbers. In our experience, a pair of nodes with the same
prefix sometimes has very large estimated distances. In this
case, using prefix number may be useful to remove such false
negatives.

In this paper, we proposed and prototyped a network dis-
tance based service utilizing coordinate based embedding of
network distance. We argued that the four services that netGPS
provides can be extremely useful and serve as primitives
for facilitating the distance based service requirements of a
large number of content distribution applications. Using real
measurement data among a large number of Internet hosts,
we evaluated the efficacy and accuracy of our prototype.
Future work shall focus on balancing the load by adopting
a distributed service infrastructure.

REFERENCES

[1] T.S. Eugene Ng and Hui Zhang, “Predicting Internet network distance
with coordinates-based approaches,” inProc. IEEE INFOCOM, New
York, NY, June 2002.

[2] Liying Tang and Mark Crovella, “Virtual landmarks for the Internet,”
in Proceedings of the Internet Measurement Conference(IMC), Miami,
Florida, Oct. 2003.

[3] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi, “Constructing Internet
coordinate system based on delay measurement,” inProceedings of the
Internet Measurement Conference(IMC), Miami, Florida, Oct. 2003.

[4] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris, “Vivaldi:
A decentralized network coordinate system,” inProceedings of ACM
SIGCOMM 2004, Portland, OR, Aug. 2004.

[5] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble, “King:
Estimating latency between arbitrary Internet end hosts,”in Proceedings
of Internet Measurement Workshop 2002, Marseille, France, Nov. 2002.

[6] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy
Stribling, “King462 data set,” http://pdos.lcs.mit.edu/p2psim/kingdata,
current year.

[7] Jeremy Stribling, “Rtt among planetlab nodes,”
http://www.pdos.lcs.mit.edu/ strib/plapp/, current year.

[8] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan Saha, “On
suitability of euclidean embedding of internet hosts,” inProc. ACM
SIGMETRICS, Saint Malo, France, June 2006.

