
Failure Insensitive Routing for Ensuring Service
Availability�

Srihari Nelakuditi1, Sanghwan Lee2, Yinzhe Yu2, and Zhi-Li Zhang2

1 Dept. of Computer Science & Engineering,
University of South Carolina,
Columbia, SC 29201, USA
srihari@cse.sc.edu

2 Dept. of Computer Science & Engineering,
University of Minnesota,

Minneapolis, MN 55414, USA
{sanghwan,yyu,zhzhang}@cs.umn.edu

Abstract. Intra-domain routing protocols employed in the Internet route around
failed links by having routers detect adjacent link failures, exchange link state
changes, and recompute their routing tables. Due to several delays in detection,
propagation and recomputation, it may take tens of seconds to minutes after a link
failure to resume forwarding of packets to the affected destinations. This disconti-
nuity in destination reachability adversely affects the quality of continuous media
applications such as Voice over IP. Moreover, the resulting service unavailabil-
ity for even a short duration could be catastrophic in the world of e-commerce.
Though careful tuning of the various parameters of the routing protocols can ac-
celerate convergence, it may cause instability when the majority of the failures
are transient. To improve the failure resiliency without jeopardizing the routing
stability, we propose a local rerouting based approach called failure insensitive
routing. Under this approach, upon a link failure, adjacent router suppresses global
updating and instead initiates local rerouting. All other routers infer potential link
failures from the packet’s incoming interface, precompute interface specific for-
warding tables and route around failed links without explicit link state updates.
We demonstrate that the proposed approach provides higher service availability
than the existing routing schemes.

1 Introduction

Link state routing protocols such as OSPF and IS-IS are the most widely used protocols
for intra-domain routing in today’s Internet. Using these protocols, routers exchange
changes in link state, recompute their routing tables, and thus respond to link and node
failures in the network by routing around them. However, several recent studies [1,5,7]
have reported that rerouting after a link failure takes tens of seconds to minutes. During
� This work is partly supported by National Science Foundation Grants CAREER Award ANI-

9734428, ANI-0073819, and ITR ANI-0085824. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

K. Jeffay, I. Stoica, and K. Wehrle (Eds.): IWQoS 2003, LNCS 2707, pp. 287–304, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

288 S. Nelakuditi et al.

this period, some destinations would be unreachable and the corresponding services
unavailable. This discontinuity in routing adversely affects the quality of continuous
media applications such as Voice over IP. Furthermore, downtime of even a few seconds
could significantly impact the reputation and the profitability of a company in the world
of e-commerce. Moreover, it has been observed [7] that link failures are fairly common in
the day to day operation of a network due to various causes such as maintenance, faulty
interfaces, and accidental fiber cuts. Hence, there is a growing demand for ensuring
destination reachability and thus service continuity even in the presence of link failures.

There have been some modifications proposed [1,2] for accelerating the convergence
of link state routing protocols. But the recipe involves tuning several delays associated
with link failure detection, link state propagation and routing table recomputation. Fur-
thermore, it is not a suitable solution for handling transient failures. It has been found [7]
that majority of the link failures are short-lived with around half of the failures lasting
less than a minute. In such a scenario, it is not prudent to disseminate these link state
changes globally and recompute routing tables at each router in the network. Instead,
it is much more appropriate to perform local rerouting and trigger global updating and
recomputation only if the link failure persists for a longer duration. Such a local rerout-
ing approach can recover promptly from failures trading off optimality of routing for
continuity of forwarding. Our objective is to devise a stable and robust routing scheme
that ensures continuous loop-free forwarding of packets to their destinations regardless
of the various delays in link state propagation and routing table recomputation.

We propose a local rerouting based approach for failure resiliency which we refer
to as failure insensitive routing (FIR). Under FIR, when a link fails, adjacent nodes
suppress global updating and instead initiate local rerouting of packets that were to
be forwarded through the failed link. Though other nodes are not explicitly notified
of the failure, they infer it from the packet’s flight. When a packet arrives at a node
through an unusual interface (through which it would never arrive had there been no
failure), corresponding potential failures can be inferred and the next hop chosen avoiding
those links. This way under FIR, the next hop for a packet is determined based on not
only the destination address but also the incoming interface. Note that such interface
specific forwarding is very much feasible with current router architectures as they anyway
maintain a forwarding table at each line card of an interface for lookup efficiency. These
interface specific forwarding tables can be precomputed since inferences about the link
failures can be made in advance. Thus with the FIR approach, when a link fails, only
the nodes adjacent to it locally reroute packets to the affected destinations and all the
other nodes simply forward packets according to their precomputed interface specific
forwarding tables without being explicitly aware of the failure. Once the failed link
comes up again, original forwarding tables are locally restored and forwarding resumes
over the recovered link as if nothing ever happened. This approach decouples destination
reachability and routing stability by handling transient failures locally and notifying only
persistent failures globally. Essentially with FIR, in the presence of link failures, packets
get locally rerouted (possibly along suboptimal paths) without getting caught in a loop
or dropped till the new shortest paths are globally recomputed.

There are several benefits in employing FIR. First, it can be deployed without altering
the destination based forwarding paradigm used in the current Internet. Only the tradi-

Failure Insensitive Routing for Ensuring Service Availability 289

tional interface independent routing table computation algorithm needs to be replaced
with an FIR algorithm for computing interface dependent forwarding tables. Second,
reachability of destinations does not depend on tuning of the various parameters associ-
ated with link failure propagation and routing table recomputation. Thus FIR improves
the service availability without jeopardizing the routing stability. Third, under FIR ap-
proach local rerouting happens only during the time a link failure is suppressed, i.e., not
reflected globally. But once all the routers have the same consistent view of the network,
forwarding under FIR would be no different from traditional routing. So FIR can be used
in conjunction with any other mechanism for engineering traffic. Finally, FIR increases
network reliability and obviates the need for expensive and complex layer 2 protection
schemes. Essentially, the FIR approach is about preparing for failures instead of reacting
to them.

We make the following contributions in this paper. We propose a mechanism for
facilitating prompt local rerouting. We present an efficient algorithm that computes
interface specific forwarding tables for dealing with single link failures in O(|E| log2 |V|)
time, where V is the set of nodes and E is the set of edges. We demonstrate that by
preparing for single link failures, most of the simultaneous failures can also be handled
and the service availability can be improved by an order of magnitude. We describe an
incremental algorithm for forwarding table computation that requires O(D2|V|) space,
where D is the network diameter, for remembering the intermediate steps of the previous
computation but takes on average less than O(|E| log |V|) time. We argue that with its
resiliency and stability, FIR is a better alternative to the existing routing schemes.

The rest of the paper is organized as follows. Section 2 introduces our FIR approach
for failure resiliency. Efficient algorithms for computing interface specific forwarding
tables are described in Section 3. Section 4 presents the results of our evaluation of
the performance of FIR. The related work is discussed in Section 5. Finally, Section 6
concludes the paper.

2 Failure Insensitive Routing

The fundamental issue in designing a local rerouting scheme is the avoidance of for-
warding loops. A straightforward local recomputation of new shortest paths without the
failed link by the adjacent node could result in a loop since other nodes are not aware
of the failure and their routing tables do not reflect the failure. We propose to address
this looping problem by forwarding a packet based on its incoming interface. This en-
ables a router to infer failures when a packet arrives through an unusual interface due
to local rerouting. These inferences about link failures can be made in advance and
interface specific forwarding tables can be precomputed avoiding the potentially failed
links. This way when a link fails, only the adjacent nodes reroute packets that were to
be forwarded through the failed link. All other nodes simply forward packets according
to their precomputed interface specific forwarding tables without being explicitly aware
of the failure. We refer to this approach as failure insensitive routing (FIR). In the fol-
lowing, using an example topology, we illustrate how packets get forwarded under FIR
and how these forwarding tables are computed.

290 S. Nelakuditi et al.

Fig. 1. Topology used for the illustration of the FIR approach

2.1 Forwarding under FIR

Consider the topology shown in Figure 1 where each link is labeled with its weight.
The corresponding shortest path routing entries at each node to destination node 6 are
shown in Figure 2. First, we point out the problem with the conventional routing in
case of a link failure. Suppose link 2−5 is down. When node 2 recomputes its routing
table, it will have 1 as the next hop to reach 6 as shown in Figure 2. If only node 2
recomputes its entries while others are not notified or still in the process of recomputing
their entries, then packets from 1 to 6 get forwarded back and forth between nodes 2 and
1. This shows that using conventional forwarding tables, local rerouting is not viable as
it causes forwarding loops.

node 1 2 3 4 5

next 2 5 5 6 6

node 1 2 3 4 5

next hop 2 1 5 6 6

Fig. 2. Routing entries: before and after local recomputation by node 2

Under FIR, forwarding loops are avoided by inferring link failures from the packet’s
incoming interface. When a packet with destination 6 arrives at 1 from 2, node 1 can
sense that some link must have failed. Otherwise, based on shortest path routing, node 2
should never forward to 1, a packet destined for 6. Node 2 would forward packets for 6
to node 1 if the link 2−5 is down. Same is true even when 5−6 is down. So when a packet
for 6 arrives at 1 from 2, node 1 can infer that one or both of these links are down. Since
node 1 is not explicitly notified of the failures, it can ensure that the packet reaches 6 by
forwarding it to 4 avoiding both the potentially failed links 2−5 and 5−6. That is why
in Figure 3, a packet arriving at node 1 with destination 6 through neighbor node 2 is
forwarded to 4 while it is forwarded to 2 if it arrives through the other two neighbors.
Such interface specific forwarding makes it possible to perform local rerouting.

Let us again consider the case of link 2−5 going down. Node 2 recomputes its
forwarding table entries as shown in Figure 3. So a packet from 2 to 6 takes the route
2→1→4→6 when the link 2−5 is down. Since node 1 is not aware of the failure, a packet
from 1 to 6 gets forwarded to 2 which reroutes it back to 1. Node 1 then forwards the

Failure Insensitive Routing for Ensuring Service Availability 291

node 1 2 3 4 5

prev 2 3 4 1 5 1 5 1 6 2 3 6

next 4 2 2 5 1 5 1 6 - 6 6 -

node 1 2 3 4 5

prev 2 3 4 1 5 1 5 1 6 2 3 6

next 4 2 2 1 - 5 1 6 - 6 6 -

Fig. 3. Interface specific forwarding entries: before and after local recomputation by node 2

packet to 4 according to its entry at the interface with previous hop 2. This way, packets
from 1 to 6 traverse the path 1→2→1→4→6. Note that though node 1 appears twice in
the path, it doesn’t constitute a loop. With interface specific forwarding, a packet would
loop only if it traverses the same link in the same direction twice. Thus using interface
specific forwarding tables, FIR avoids looping and provides local rerouting.

It should be noted that FIR adheres to conventional destination based forwarding
paradigm though it has different forwarding table at each interface. While FIR requires
that the next hop for a packet is determined based on its previous hop, it is very much
feasible with the current router architectures as they anyway maintain a forwarding table
at each line card of an interface for lookup efficiency. The only deviation is that unlike
in the current routers with the same forwarding table at each interface, with the FIR
approach these tables are different. However, the forwarding process remains the same
— when a packet arrives at an incoming interface, the corresponding forwarding table
is looked up to determine the next hop and the outgoing interface.

2.2 Forwarding Table Computation

The forwarding process under FIR is essentially the same as it is under the conven-
tional routing. The key difference is in the way interface specific forwarding tables are
computed. The computation of the forwarding table entries of an interface involves iden-
tifying a set of links whose individual or combined failure causes a packet to arrive at
the node through that interface. We refer to these links as key links and denote by Kd

j→i

the set of links which when one or more down cause packets with destination d to arrive
at node i from node j. Note that this key link set is empty, i.e., Kd

j→i = ∅ if node i is
anyway the next hop along the shortest path from j to d without any link failures. For
the topology in 1, K6

2→1 = {2−5, 5−6} and K6
3→1 = {3−5} while K6

1→2 = ∅ as explained
below.

Consider the node 1. The next hop along the shortest path from node 1 to reach 6 is
2, i.e., K6

1→2 = ∅. So if all the links are up, node 1 should never receive from 2 a packet
destined for 6. However, if the link 2−5 is down, node 2 would forward packets with
destination 6 to node 1. Similarly when the link 5−6 is down, packets from 5 to 6 would
traverse the path 5→2→1→4→6. So from the arrival of a packet with destination 6 from
neighbor node 2, node 1 can infer that one or both of the links 2−5 and 5−6 are down,
i.e., K6

2→1 = {2−5, 5−6}. Similarly, node 1 would receive a packet for the destination 6
through 3 when the link 3−5 is down. In the other case when link 5−6 is down, packets
arrive at node 1 through 2 and not through 3 since from 5 to 6 the (recomputed) shortest

292 S. Nelakuditi et al.

path would be 5→2→1→4→6. Hence from arrival of packets with destination 6 through
node 3, node 1 infers that only link 3−5 is down, i.e., K6

3→1 = {3−5}.

2→1
dest 2 3 4 5 6

next hops - 3 4 3 4

3→1
dest 2 3 4 5 6

next hops 2 - 4 2 2

4→1
dest 2 3 4 5 6

next hops 2 3 - 2 2

Fig. 4. Forwarding tables at node 1

Once the key links are determined, it is straightforward to compute the interface
specific forwarding tables. Let E be the set of all links in the network. Suppose Rd

i (X)
represents the set of next hops from i to d given the set of links X . Let Fd

j→i denote the
forwarding table entry, i.e., the set of next hops to d for packets arriving at i through
the interface associated with neighbor j. This entry can be computed using Dijkstra’s
Shortest Path First (SPF) algorithm after excluding the links in the set Kd

j→i from the set
of all links E . Thus,

Fd
j→i = Rd

i (E \ Kd
j→i)

The forwarding tables corresponding to node 1 of Figure 1 are shown in Figure 4.
Given that K6

2→1 = {2−5, 5−6}, the shortest path from 1 to 6 without those links be
1→4→6. Therefore, packets destined for 6 arriving at 1 through 2 are forwarded to next
hop 4. On the other hand, the next hop for packets to destination 5 arriving through 2 is
set to 3 since K5

2→1 = {2−5}. The other entries are also determined similarly. Once the
forwarding tables are computed, packets arriving through an interface are forwarded in
the usual manner by looking up the table corresponding to that interface.

We reiterate that these inferences about potential link failures are made not on the
fly but in advance and forwarding tables are precomputed according to these inferences.
Furthermore, packets are forwarded according to their destination addresses only. In
other words, FIR does not require any changes to the existing forwarding plane, making
it amenable for ready deployment.

2.3 Local Recomputation of Forwarding Tables

The forwarding tables computed as explained above help perform local rerouting without
any global recomputation of routing and forwarding tables. Only the nodes adjacent to
a failed link have to recompute their entries. However, if the local recomputation takes
significant time, then there would not be substantial savings due to this approach over
conventional global updating based approach. Fortunately, we do not have to compute
these tables from scratch. It is possible to locally recompute the forwarding tables in
negligible amount of time by maintaining what we refer to as backwarding table for
each interface.

When an interface is down, its backwarding table can be used to reroute packets that
were to be forwarded through that interface. The entries in this table, denoted by Bd

i→j ,

Failure Insensitive Routing for Ensuring Service Availability 293

1→2
dest 2 3 4 5 6

back hops 3 4 3 3 3

1→3
dest 2 3 4 5 6

back hops 4 2 - 4 4

1→4
dest 2 3 4 5 6

back hops - - 2 - -

Fig. 5. Backwarding tables at node 1

give the set of alternate next hops, referred to as back hops, from node i for forwarding
a packet with destination d when the interface or the link to the usual next hop node j
is down. The backwarding table entries can also be precomputed similar to forwarding
table entries once the key links are identified as follows:

Bd
i→j ⇐ Rd

i (E \ Kd
i→j \ i−j)

Essentially we exclude all the links that would cause the packet to exit from the interface
of i to j and also the link i−j itself in computing the back hops. When preparing for at
most single link failures, this amounts to

Bd
i→j ⇐ Rd

i (E \ i−j)

The backwarding table entries for node 1 of the topology in Figure 1 are shown in
Figure 5. Let us look at the entries for the interface 1→2. It is clear that when the link
1−2 is down, packets to destinations 2, 5 and 6 be rerouted to 3 since the shortest path to
these nodes without 1−2 is through 3. But, it may not be obvious why the next hops for
destinations 3 and 4 are 4 and 3 respectively. Consider the entry of 3. The corresponding
set of key links K3

1→2 is {1−3}, i.e., a packet with destination 3 is forwarded from 1 to
2 only if {1−3} is down. So when {1−2} is also down, the next best path is through 4.
Similarly B4

1→2 is 3. Now let us turn our attention to the backwarding table in Figure 5
for the interface 1−4. According to these entries, when link 1−4 is down, packets to 4 get
rerouted to 2 and packets to any other destination are simply discarded as they are not
reachable. This is because packets to other destinations are forwarded to 4 only when
certain other links are also down. For example, K6

1→4 = {2−5, 5−6} and when link 1−4
also fails, node 6 becomes unreachable from node 1.

By employing interface specific forwarding and backwarding tables, we can elim-
inate the delay due to any dynamic recomputation and reroute packets without any
interruption even in the presence of link failures. The downside is that the deployment
of backwarding tables requires changes to the forwarding plane. When an interface is
down, the corresponding backwarding table needs to be looked up to reroute the packet
through another interface. This necessitates change in the router architecture, the cost
of which we are not in a position to assess. To avoid altering the forwarding plane, we
propose to maintain the backwarding tables in the control plane and recompute the for-
warding tables as follows. Suppose the failed link is i−k and the new forwarding tables
are denoted by F̃ . Then the forwarding table entry of destination d for j→i interface,
where j �= k, is computed as follows:

F̃d
j→i =

Fd
j→i \ k ∪ Bd

i→k if k ∈ Fd
j→i

Fd
j→i otherwise

294 S. Nelakuditi et al.

The above expression takes into account the possibility of multiple next hops along equal
cost paths to a destination. A simplified expression for single path routing would be

F̃d
j→i =

Bd
i→k if Fd

j→i = k
Fd

j→i otherwise

Essentially, only those entries in the forwarding tables that have k as the next hop are
reset according to the backwarding table associated with k. Thus, using the backwarding
tables, in case of an adjacent link failure, a node quickly recomputes the forwarding tables
locally and promptly resumes forwarding.

2.4 Summary of the FIR Scheme

We now summarize the operation of the FIR scheme. Each node i under FIR maintains
a forwarding table Fj→i per each neighbor j, and a backwarding table Bi→j per each
neighbor j. Fj→i is used to forward packets arriving at i through neighbor j. Bi→j is
needed for locally recomputing the forwarding tables of i when the link i−j is down.

Suppose the failure of the link i−j is detected by node i at time tdown . Then node i
locally recomputes its forwarding tables and performs local rerouting of the packets that
were to be forwarded to j. If the failure persists for a preset duration Tdown , then a global
link state update is triggered at tdown +Tdown and forwarding tables at all routers are
recomputed. During the time period between tdown and tdown +Tdown , the link failure
update is said to be suppressed since all the nodes other than the adjacent nodes i and j
are not aware of the failure. Local rerouting is in effect when and only when there exists
a suppressed failure event.

After sometime, suppose at time tup , link i−j comes up. Then the action taken by node
i depends on whether the failure event is being suppressed or not. If the failure event is
being suppressed, original forwarding tables are locally restored and forwarding resumes
over the recovered link as if nothing ever happened. Otherwise, the link is observed for
a preset period Tup and if it stays up, then at time tup +Tup , a global update is triggered
announcing that the link is up. This way, failures of short duration are handled locally
while persistent failures are updated globally. When the failures are transient, FIR not
only improves reachability but also reduces overhead.

3 Efficient FIR Algorithms

The process of forwarding and backwarding table computation, as explained in the pre-
vious section, involves determining a set of key links for each interface of a node. In this
section, we develop efficient algorithms for identifying key links. We show that by sav-
ing some intermediate steps of the previous computation, forwarding and backwarding
tables can be obtained incrementally in time less than an SPF computation.

The algorithms described here assume that all the links are point to point, and bidi-
rectional with equal weight in both directions, which is generally true for the backbone
networks. It is also assumed that no more than one link fails simultaneously. There are
several reasons for concentrating on singe link failures. First, it has been observed [13]

Failure Insensitive Routing for Ensuring Service Availability 295

that failure of a single link is more common than simultaneous multiple link failures.
Second, under FIR a failure is suppressed for a certain duration and if it persists beyond
that time, a global update is triggered. Only simultaneous suppressed failures could pose
problem for FIR. The possibility of multiple simultaneous suppressed failures happen-
ing in the network is rare considering that suppress interval would be in the order of a
minute. Third, as we demonstrate in the next section, by preparing just for single link
failures, FIR can deal with the majority of the multiple simultaneous failures also.

3.1 Available Shortest Path First

We now present an algorithm for determining key links and computing forwarding and
backwarding tables. We refer to this procedure as available shortest path first (ASPF)
since it computes shortest paths excluding the unavailable (potentially failed) links.
The notation used here and the rest of the paper is listed in a table along with all the
algorithms. A straightforward method for determining key links would be to invoke
Dijkstra’s SPF procedure once per each link in the network. Its time complexity would
be O(|E|2 log |V|), which is too high to be practical. Fortunately, it is possible to compute
key links more efficiently for single link failures in O(|E| log2 |V|) time based on the
following observations:

– Only the failure of a link along the shortest path from node i to a destination d
may require unusual forwarding of packets to d arriving at i. Otherwise packets are
forwarded simply along the usual shortest path. As per this revised definition of key
links, for the topology in Figure 1, K6

3→1 = ∅ instead of the original set {3−5} since
3−5 is not along the shortest path from 1 to 6. This new interpretation limits the
search space for key links to links in SPT rooted at i. Given that the number of links
in a tree would be O(|V|), search space is reduced from O(|E|) to O(|V|).

– A packet needs to be forwarded to an unusual next hop only when it arrives back
from a usual next hop. In other words, an edge e is included in Kd

j→i only if j is a
next hop from i to d with e, and i is a next hop from j to d without e. This helps
segregate nodes and links based on the next hops from i, i.e., Kd

j→i is ∅ if j is not
a usual next hop from i to d. Also, an edge e is not a member of Kd

j→i if e is not
in the subtree below j of the SPT of i. Therefore, the key links of all the interfaces
together can be determined within O(|V|) SPT computations.

– Incremental SPF (ISPF) procedure can be used for efficiently figuring out the effect
of a link failure. ISPF adjusts an existing shortest path tree instead of constructing
it from scratch. The complexity of the ISPF is proportional to the number of nodes
affected by the link failure which on the average is much smaller than |V|.

The ASPF procedure based on the above observations is shown in Algorithm 1.
It uses ISPF procedure (not shown here but can be found in [12]), for incrementally
building a new SPT from an existing SPT. The arguments to ISPF include the tree T
corresponding to the edge set E , the set E ′ of (failed) edges to be removed and the set V ′

of interested destinations. It returns a new tree consisting of nodes in V ′ without the links
in E ′. In ASPF procedure, the sets of key links are first initialized to ∅ (lines 1−3). Then the

296 S. Nelakuditi et al.

Notation
V set of all vertices
E set of all edges
Ni set of neighbors of node i
We weight of edge e
|N | avg no. of neighbors of a node
D diameter of the network

Rd
i set of next hops from i to d

Fd
j→i set of next hops from j→i to d.

Bd
j→i set of back hops from i→j to d.

Kd
j→i key links from j→i to d.

Ti shortest path tree rooted at i
T e

i SPT of i without edge e
C(k, T) cost to node k from root of T
P (k, T) parents of node k in tree T
N(k, T) next hops to k from root of T
S(k, T) subtree below k in tree T
V (T) set of all vertices in tree T
E(T) set of all edges in tree T
Q priority queue

Algorithm 1 : ASPF(i)
1: for all j ∈ Ni do
2: for all d ∈ V do
3: Kd

j→i ⇐ ∅
4:
5: Ti ⇐ SPF(i, V, E)
6: for all j ∈ Ni and j ∈ N(j, Ti) do
7: Tj ⇐ SPF(j, V, E)
8: E ′ ⇐ E(S(j, Ti))
9: for all u→v ∈ E ′ do

10: V ′ ⇐ V (S(v, Ti))
11: T u−v

j = ISPF(Tj , V ′, {u−v})
12: for all d ∈ V ′ do
13: if i ∈ N(d, T u−v

j) then
14: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

15:
16: return TABLES(i)

Algorithm 2 : TABLES(i)
1: for all j ∈ V do
2: T i−j

i ⇐ ISPF(Ti, V, {i−j})
3: for all d ∈ V do
4: Bd

i→j ⇐ N(d, T i−j
i)

5: if not exists T
Kd

j→i

i then

6: T
Kd

j→i

i ⇐ ISPF(Ti, V, Kd
j→i)

7: Fd
j→i ⇐ N(d, T

Kd
j→i

i)
8: return Fj→i, Bi→j ∀j ∈ Ni

Algorithm 3 : IASPF1(i, f)
1: T̃i ⇐ ISPF(Ti, V, {f})
2: for all j ∈ Ni and j ∈ N(j, Ti) do
3: T̃j ⇐ ISPF(Tj , V, {f})
4: E ′ ⇐ E(S(j, T̃i))
5: for all u→v ∈ E ′ do
6: V ′ ⇐ V (S(v, T̃i))
7: T̃ u−v

j = ISPF(T̃j , V ′, {u−v})
8: for all d ∈ V ′ do
9: if i ∈ N(d, T̃ u−v

j) then
10: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

11:
12: return TABLES(i)

Algorithm 4 : IASPF2(i, f)
1: T̃i ⇐ ISPF(Ti, V, {f})
2: for all j ∈ Ni and j ∈ N(j, Ti) do
3: T̃j ⇐ ISPF(Tj , V, {f})
4: E ′ ⇐ E(S(j, T̃i))
5: for all u→v ∈ E ′ do
6: V ′ ⇐ V (S(v, T̃i))
7: if � ∃T u−v

j or V ′ �⊆ V (T u−v
j) or f ∈

E(T u−v
j) then

8: T̃ u−v
j ⇐ ISPF(T̃j , V ′, {u−v})

9: else
10: T̃ u−v

j ⇐ T u−v
j

11: for all d ∈ V ′ do
12: if i ∈ N(d, T̃ u−v

j) then
13: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

14:
15: return TABLES(i)

Failure Insensitive Routing for Ensuring Service Availability 297

shortest path tree Ti rooted at i is computed using SPF procedure (line 5). Each neighbor
j that is a next hop to some destination is considered in turn (line 6). If not, the key links
for the corresponding interface j→i remain ∅. Otherwise, j is the next hop to all the
nodes in the subtree below j. Only the links E(S(j, Ti)) in this subtree S(j, Ti) could
be key links for the nodes V (S(j, Ti)). So the search for key links is restricted only to
E(S(j, Ti)) (lines 8−9). A SPT T u−v

j without each of these edges u−v is incrementally
computed using ISPF (line 11) from Tj which was computed earlier using SPF (line 7).
These SPTs are partial trees computed to span only the affected nodes below u−v in tree
Ti (lines 10−11). Finally, a link u−v is included in Kd

j→i for all d in V (S(v, Ti)) if i is
a next hop to d from j in tree T u−v

j rooted at j without edge u−v (lines 12−14). We can
prove that with key links computed thus, when no more than one link fails, FIR always
finds a loop-free path to a destination if such a path exists. The proof is given in [12].

Once key links are determined, forwarding and backwarding tables are computed
using TABLES procedure shown in Algorithm 2. Since we are preparing the forwarding
tables for handling single link failures, the backwarding table for an interface i→ j
contains the next hops without only the edge i−j. These entries are obtained using ISPF
on Ti (lines 2−4). The forwarding table entry for destination of j→i interface is computed

by excluding the links in the set Kd
j→i. A tree T Kd

j→i

i corresponding to key link set Kd
j→i

is computed only if it wasn’t previously computed (lines 5−6). In particular, when the
key link set is empty, existing tree Ti can be reused. Essentially, a shortest path tree is
computed only once for each distinct set of key links.

We now analyze the complexity of the ASPF procedure . There are |N |+1 invocations
of SPF (lines 5 and 7) and O(|V|) of ISPF invocations (line 11). The running time of an
incremental algorithm such as ISPF depends on the number of nodes affected (requiring
recomputation of paths) by the changes in the edge set. So let us measure the complexity
in terms of the affected nodes. Each link e in the tree Ti is pulled down in turn to see its
impact on the next hops from a neighbor j. Only those nodes that are below the link e
are affected by the removal of e. A node is affected by the removal of any of the links
along the path to it from the root. The number of link removals (the ISPF computations)
affecting a node in the worst case would be the diameter of the network D. So the total
number of affected nodes due to O(|V|) ISPF invocations would be O(D|V|). Since
regular SPF computation has to start from scratch, we can say that the affected nodes
are O(|V|). So the complexity of key link computation is then O(D + |N | + 1) times
regular SPF computation. The time taken by TABLES depends on the sets of key links and
it is found to be dominated by the time for key link computation. Therefore, considering
that D can be approximated by log |V| and SPF takes O(|E| log |V|), the complexity of
ASPF is O(|E| log2 |V|).

3.2 Incremental ASPF Algorithms

The ASPF procedure described above computes forwarding tables efficiently and thus
makes the deployment of FIR feasible. Its running time can be further improved by
saving the intermediate steps of the previous computation of these tables (corresponding
to the previous global update) instead of obtaining them from scratch. We devised two
incremental versions IASPF1 and IASPF2 that take advantage of the saved information

298 S. Nelakuditi et al.

in determining new key links and tables when an update is received notifying the failure
of a link. These two versions differ in the amount of memory usage. IASPF1 remembers
Ti rooted at i, Tj and T i−j

i for each neighbor j. So the total space required for IASPF1
is O((2|N | + 1)|V|). In addition to this, IASPF2 saves partial trees T u−v

j for each edge
u−v in Ti. The additional space required for IASPF2 is O(D2|V|).

The procedure IASPF1 shown in Algorithm 3 is quite similar to ASPF with changes
only in lines 5 and 7 (renumbered 1 and 3 respectively in IASPF1). Suppose the failed
link is f . While ASPF uses SPF (line 5), IASPF1 invokes ISPF to compute new T̃i without
link f based on the saved old Ti (line 1). Similarly T̃j is computed for each j using old
Tj (line 3). The backwarding table computation time can also be improved by using
the saved T i−j

i . The rest of the IASPF1 procedure is no different from ASPF. With only
minor changes, using O((2|N | + 1)|V|) space, IASPF1 reduces approximately |N | + 2
SPF computations. These procedures are shown only for a link down event. A link up
event can also be treated analogously.

The IASPF2 procedure shown in Algorithm 4 further improves the running time by
avoiding unnecessary computations of the partial trees T u−v

j for each edge u−v in Ti.
This procedure is similar to IASPF1 except for lines 7−10. A tree T u−v

j is reused if it
exists and spans all the nodes affected when u−v is down without including the failed
link f . Otherwise, a new such tree is constructed by invoking IASPF. Since these trees
are partial trees and a link is not part of many such trees, a large fraction of IASPF
invocations can be avoided. In the next section, we show that the average running time
of IASPF2 is less than even a single SPF computation. Now let us look at the additional
space required for storing these partial trees. As mentioned earlier, a node is affected
by all the links along its path from the root and their count in the worst case would be
the network diameter D. So a node would be a member of at most D partial trees. The
space needed for a partial tree in the worst case would be D times the number of affected
nodes in it. So the total space for all the partial trees put together would be less than
D2|V| which is only linear in terms of the number of nodes in the network.

4 Evaluation of the FIR Scheme

We now evaluate the performance of the FIR scheme and demonstrate its failure resiliency
and forwarding efficiency. We first describe how link failures in random topologies are
modeled. Then, we show how service downtime is reduced substantially by employing
FIR. It is also shown that compared to the optimal shortest path routing the extent of
path elongation due to local rerouting by FIR is not significant. Finally, the relative
computational complexity of ASPF and incremental ASPF algorithms w.r.t. Dijkstra’s
SPF algorithm is presented to affirm that FIR is viable.

4.1 Link Failure Model

The pattern of link failures in large operational networks is yet to be characterized very
well. In [7], some detailed measurements and analysis on the link failure events in the
Sprint’s IP backbone network are reported. They presented a histogram of the mean
time between failure of links and the cumulative distribution of failure durations. Their

Failure Insensitive Routing for Ensuring Service Availability 299

Fig. 6. Distribution of failures

findings are used in this paper as the basis for inducing failures on random topologies
generated using the BRITE topology generator [9] with link weights chosen randomly
from the range 100 to 300. We modeled the mean time between failures (MTBF) of
links with a heavy tailed distribution, with the distribution function obtained by curve
fitting on the histogram reported in [7]. The MTBF values generated in this way vary
from several hours to tens of days. Our model of failure events duration was based on
the cumulative distribution reported in [7]. We partitioned that distribution function
into several segments and use straight lines to approximate each segment as shown in
Figure 6(a). Histograms on the relative frequency of the number of simultaneous failures
is shown in Figure 6(b) for 50 node topology with average degree 4.

Fig. 7. Performance evaluation in terms of service downtime

300 S. Nelakuditi et al.

4.2 Service Downtime

We now compare the routing performance with and without employing FIR. The per-
formance is measured in terms of service downtime which is defined as the total time
any two nodes in the network are unreachable from each other. First consider the per-
formance with FIR. When a router under FIR detects an adjacent link failure, it does not
propagate the LSP immediately. Instead it suppresses the global update and initiates local
rerouting. There would not be any delay between failure detection and local rerouting if
backwarding tables are employed in the forwarding plane. However, local rerouting by
different nodes due to multiple suppressed failures can result in a forwarding loop con-
tributing to service downtime. For example, suppose the links 2−5 and 4−6 of the topology
in Figure 1 are down. Then packets from 1 to 6 take the path 1→2→1→4→1→2→1 · · ·,
thus keep looping even though 6 is reachable through 1→3→5→6. Nevertheless, since
failures are suppressed only for a certain suppress interval, it is less likely that multiple
links fail simultaneously within a short duration. Moreover, only a specific scenario of
failures of links along the shortest path and the alternate path can cause looping.

To demonstrate the ability of FIR in handling simultaneous failures, the downtime
with FIR is plotted as a function of the suppress interval in Figure 7(a). The results are
shown for network topologies of different size (50, 100, and 200 nodes) and average
degree of 4. Every point in the plot is the average of 5 simulation runs, with the vertical
bars reporting 95% confidence intervals. When the suppress interval is 60 seconds, the
fraction of the time some destination is unreachable due to loop-causing simultaneous
multiple suppressed failures is less than 0.02%. Even when the suppress interval is made
2 minutes to further reduce the global link state update overhead, all nodes are reachable
99.95% of the time. These results suggest that by preparing for single link failures, FIR
can also handle most of the simultaneous link failures.

The discussion above assumed that local rerouting does not incur any delay. But
when the backwarding tables are not employed in the forwarding plane there would be
some delay in locally sensing the failure, recomputing the forwarding tables and updating
FIBs. The time to detect a link failure would be much shorter with local rerouting than
with global rerouting. For example, a link can be considered failed and local rerouting is
triggered with the loss of single hello packet, while the failure event is notified globally
only after the loss of 5 hello packets. Essentially, local rerouting enables swift response
to failures without causing routing instability. Using the backwarding tables stored in
the control plane, the forwarding tables can be recomputed in negligible amount of time.
Then, the time to update FIBs depends on the number of entries changed. Assuming that
the total local rerouting delay is 2 seconds, the service downtime with FIR is contrasted
with downtime without FIR in Figure 7(b).

Let us look at the downtime without FIR. Suppose a link fails at time t and after a
period T all routers reconverge and forwarding to the affected destinations is resumed.
We refer to this time T as the convergence delay which is the sum of all the delays
due to several contributing factors such as lsp-generation interval, and spf-interval as
explained in [7]. During this period certain node pairs that have shortest paths through
the failed link are not reachable. Figure 7(b) shows the service downtime without FIR
as a function of the convergence delay. It also shows the downtime with FIR assuming
local rerouting delay of 2 seconds and suppress interval of 1 minute. It is clear that by

Failure Insensitive Routing for Ensuring Service Availability 301

employing FIR, service downtime can be improved by at least an order of magnitude.
In addition, by suppressing the update of failures that last less than a minute, majority
of the failures are handled without global updating and recomputation. These results
indicate that FIR not only increases failure resiliency but also ensures routing stability
while reducing update overhead.

4.3 Path Length Stretch

Under FIR, only the node adjacent to a failed link is aware of the failure and all other
nodes are not. So, a packet takes the usual shortest path till the point of failure and then
gets rerouted along the alternate path. Consequently, in the presence of link failures, FIR
may forward packets along longer paths compared to the globally recomputed optimal
paths based on the link state updates. For example in the topology of Figure 1, when the
link 2−5 is down, packets from 1 to 6 are forwarded along the path 1→2→1→4 →6.
Had node 1 been made aware of the link failure, packets would be forwarded along the
shorter path 1→3→5→6. However, we found that on realistic large topologies the extent
of this elongation is not significant. Let stretch of a path between a pair of nodes be the
ratio of the lengths of the path under FIR and the optimal shortest path. When the weights
of all the links are not same, path length is said to be the sum of the weights of its links.
Without any link failures, there is no difference between the FIR paths and the optimal
shortest paths. So the stretch is 1. We have measured the stretch under link failures due
to FIR for random topologies of various sizes. Across all topologies the average stretch
is less than 1.2 and in most cases it is close to 1.

4.4 Forwarding Table Computation Complexity

As explained before, the main change required in the control plane for the deployment
of FIR is the replacement of traditional interface independent routing table computation
algorithm with an algorithm for computing interface dependent forwarding tables. This
algorithm is invoked only when a link failure lasts longer than a suppress interval and
a global update is triggered. This computation is done while packets to the affected
destinations are locally rerouted. Therefore, unlike in the existing routing schemes, the
running time of the FIR algorithms does not affect the reachability of destinations.
Nevertheless, it is desirable to reduce the computational overhead on a router. Here we
evaluate the running time of the FIR algorithms and show that the forwarding tables can
be incrementally computed in less than a SPF computation time.

We measured the time complexity of all these SPF based algorithms in terms of the
number of distance comparisons made as was done in [10]. The distances of two nodes
are compared for updating distance of one of them or for readjusting the priority queue
after an extract or enque operation. The running time of ASPF and its incremental ver-
sions IASPF1 and IASPF2 are shown in Figure 8. We show the relative performance of
these algorithms w.r.t. well known Dijkstra’s SPF algorithm. Since Dijkstra’s algorithm
is widely deployed, using it as a reference helps in assessing the running time of these
algorithms. The memoryless ASPF procedure takes around 10 times longer than SPF for
computing forwarding tables from scratch. The incremental procedure IASPF1 remem-
bers 2|N |+1 shortest path trees and improves the running time to less than 5 times SPF.

302 S. Nelakuditi et al.

Fig. 8. Comparison of run time complexity of FIR algorithms

Using an additional space of less than D2|V|, IASPF2 takes no more than a single SPF
computation. Its relative performance gets better as the connectedness increases. Apart
from the modest space requirement, IASPF2 does not add any additional processing
burden on routers that currently employ Dijkstra’s SPF algorithm for computing routes.

These results establish that FIR is feasible, reliable, and stable. Furthermore, it re-
quires minimal changes in control plane only and also reduces communication overhead.
These features make FIR an attractive alternative to the existing routing schemes.

5 Related Work

The nature of link failures in a network and their impact on the traffic has received a great
deal of attention recently. The frequency and the duration of link failures in a backbone
network has been studied and reported in [5,7]. They observe that link failures are part of
everyday operation of a network due to various causes such as maintenance, accidental
fiber cuts, and misconfigurations. It is also found that the majority of the failures are
transient lasting less than a minute warranting local rerouting. The impact of link failures
on Voice-over-IP is assessed in [4]. They noticed that link failures may be followed by
routing instabilities that last for tens of minutes resulting in the loss of reachability of
large sets of end hosts. Since the level of congestion in a backbone is almost negligible,
offering high availability of service is identified as the major concern for VoIP. These
findings about the link failures and their debilitating effect on the network services
provide a strong motivation for schemes such as FIR that focus on ensuring service
continuity.

There have been several proposals for mitigating the impact of link failures on net-
work performance. [6] and [13] address the issue of assigning weights to links such that
the traffic is balanced across the network even in the presence of link failures. These
schemes can be thought of as preparing for link failures in terms of reducing overload
while FIR is concerned with increasing availability. As mentioned earlier, guaranteeing
reachability is found to be an overriding concern than avoiding congestion in a backbone
network. Moreover, these schemes can be used in conjunction with FIR. A detailed anal-

Failure Insensitive Routing for Ensuring Service Availability 303

ysis of the sources of delay in routing reconvergence after a link failure is provided in [1,
2]. They suggest tuning various parameters related to link state propagation and routing
table computation for accelerating the convergence and reducing the downtime. This
may not be the best recipe for handling common transient link failures. The objective of
FIR is to make forwarding insensitive to the parameter values chosen for accelerating
convergence and insuring stability.

A recent work closely related to FIR is the deflection routing proposed in [8]. The
basic idea underlying their approach is to select a next hop node based on strictly de-
creasing cost criterion. While deflection routing guarantees loop-free paths, it may not
always find such a path even if one exists. For example, in a simple triangle topology
when a link with the smallest cost goes down, the corresponding pair of nodes are not
reachable. Apart from this last hop problem, deflecting routing requires that the weights
of links satisfy a certain condition. FIR imposes no such restrictions on weight assign-
ment and assures loop-free forwarding to any reachable destinations in case of single
link failures. An algorithm proposed in [11] performs local restoration by informing
only the routers in the neighborhood about link failure events instead of all routers. FIR
achieves similar effect without requiring any changes to link state propagation mecha-
nism. An application layer solution is proposed in [3] for detecting and recovering from
path outages using a resilient overlay network. While RON is an attempt to overcome
the slow convergence of BGP based inter-domain routing, FIR is a remedy for outages
in intra-domain routing. Nevertheless, we believe network layer schemes such as FIR
obviate the need for application layer approaches like RON.

6 Conclusions and Future Work

In this paper, we addressed the problem of ensuring destination reachability in the pres-
ence of link failures. We proposed a failure insensitive routing approach where routers
infer link failures from the packet’s flight and precompute interface specific forward-
ing tables avoiding the potentially failed links. When a link fails, only adjacent nodes
locally reroute packets while all other nodes simply forward them according to their
precomputed interface specific forwarding tables without being explicitly aware of the
failure. We presented an available shortest path first algorithm that computes interface
specific forwarding tables for dealing with single link failures in O(|E| log2 |V|) time.
We have also described an incremental ASPF algorithm that requires O(D2|V|) space
for remembering intermediate steps of the previous computation but runs in less time
than a SPF computation. We have demonstrated that FIR handles simultaneous multiple
failures also and reduces service downtime by an order of magnitude. Essentially FIR
approach improves failure resiliency without jeopardizing routing stability. It does so
without altering the forwarding plane while reducing communication overhead. Hence,
we believe that FIR is an attractive alternative to the existing routing schemes. We are
currently in the process of conducting packet level simulations to assess the utility of FIR
in terms of throughput received by TCP flows and quality experienced by VoIP flows.
Also, we plan to actually implement FIR and evaluate its performance to make its case
more compelling.

304 S. Nelakuditi et al.

References

1. C. Alattinoglu, V. Jacobson, and H. Yu, “Towards Milli-Second IGP Convergence,” draft-
alaettinoglu-ISIS-convergence-00.txt, November 2000.

2. C. Alattinoglu, and S. Casner, “ISIS routing on the Qwest backbone: A recipe for subsecond
ISIS convergence,” NANOG 24, 2/2002.

3. D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Overlay Networks,”
SOSP, 2001.

4. C. Boutremans, G. Iannaccone, and C. Diot, “Impact of Link Failures on VoIP Performance,”
NOSSDAV, 2002.

5. C.-N. Chuah, S. Bhattacharyya, G. Iannaccone, C. Diot, “Studying failures & their impact on
traffic within a tier-1 IP backbone”, CCW, 2002.

6. B. Fortz, “Optimizing OSPF/IS-IS weights in a changing world”, IEEE JSAC Special Issue
on Advances in Fundamentals of Network Management, Spring 2002.

7. G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, C. Diot, “Analysis of link failures
in an IP backbone”, IMW 2002.

8. S. Iyer, S. Bhattacharyya, N. Taft, N. McKeown, and C. Diot, “An approach to alleviate link
overload as observed on an IP backbone,” INFOCOM, 2003.

9. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal Topology
Generation”, Proceedings of MASCOTS 2001, Cincinnati, August 2001.

10. P. Narvaez, “Routing reconfiguration in IP networks”, Ph.D. Dissertation, MIT, June 2000.
11. P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local RestorationAlgorithms for Link-State Routing

Protocols”, ICCCN, 1999.
12. S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure Insensitive Routing for Ensuring

Service Availability,” Technical Report, University of South Carolina, Columbia, February
2003.

13. A. Nucci, B. Schroeder, S. Bhattachrayya, N. Taft, C. Diot, “IS-IS link weight assignment for
transient link failures,” SPRINT ATL Technical Report TR02-ATL-071000.

	Introduction
	Failure Insensitive Routing
	Forwarding under FIR
	Forwarding Table Computation
	Local Recomputation of Forwarding Tables
	Summary of the FIR Scheme

	Efficient FIR Algorithms
	Available Shortest Path First
	Incremental ASPF Algorithms

	Evaluation of the FIR Scheme
	Link Failure Model
	Service Downtime
	Path Length Stretch
	Forwarding Table Computation Complexity

	Related Work
	Conclusions and Future Work

